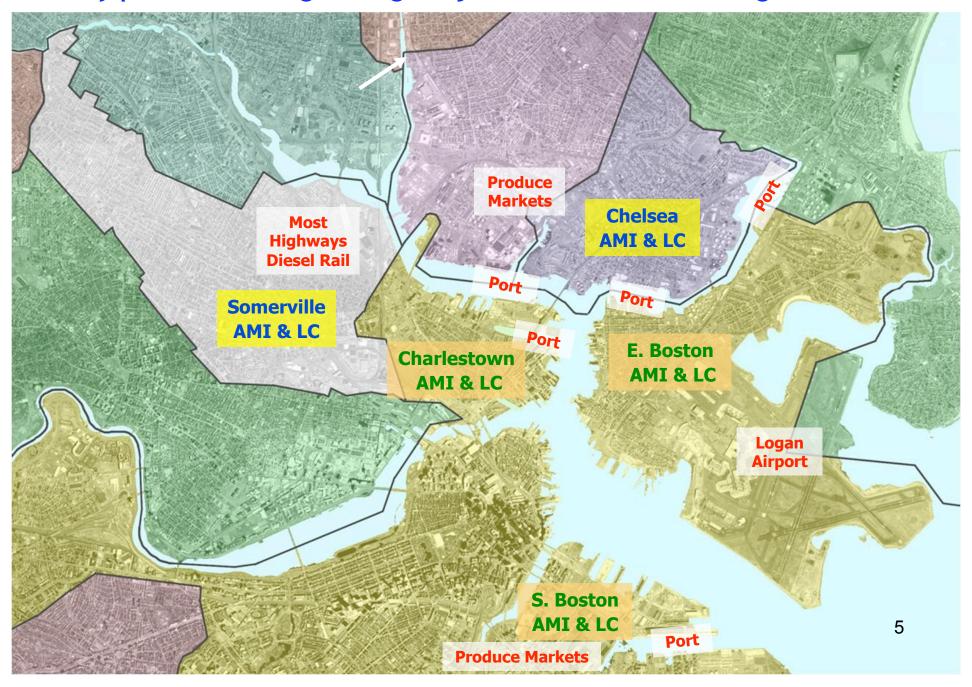
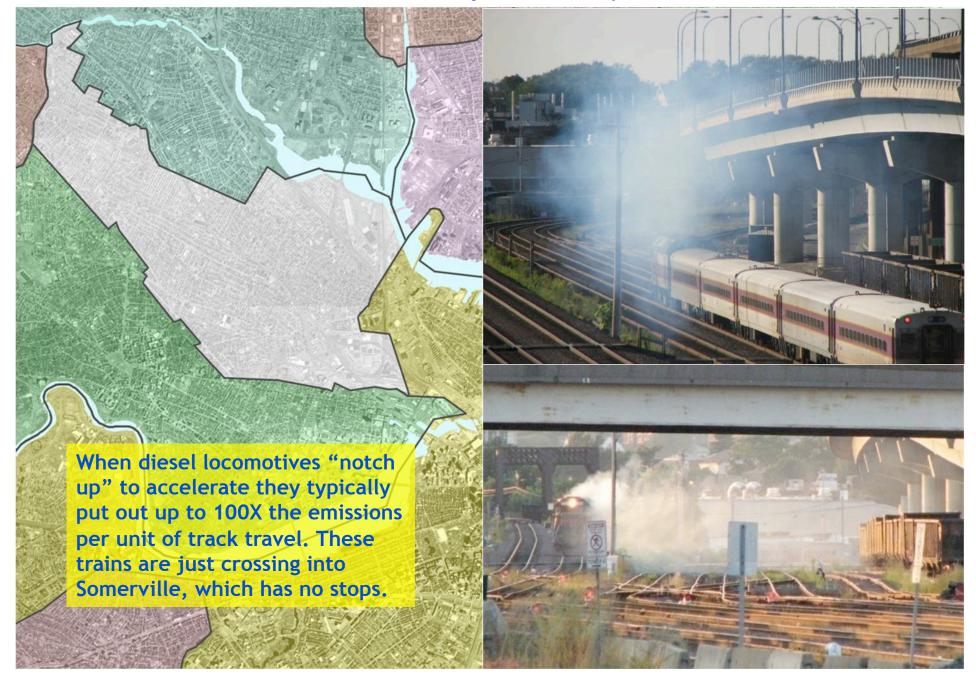
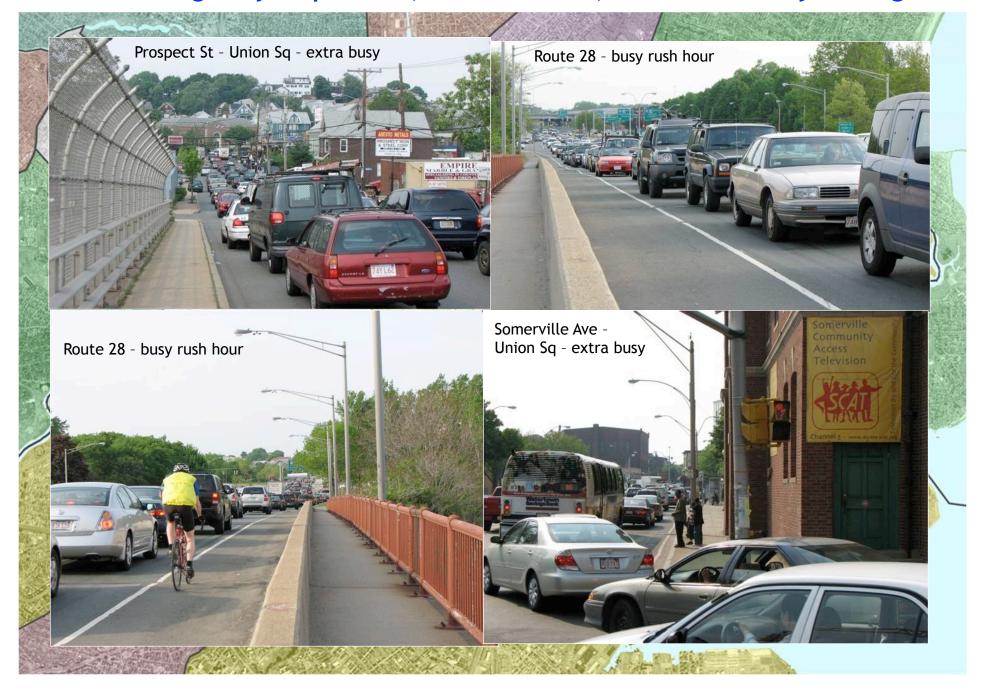
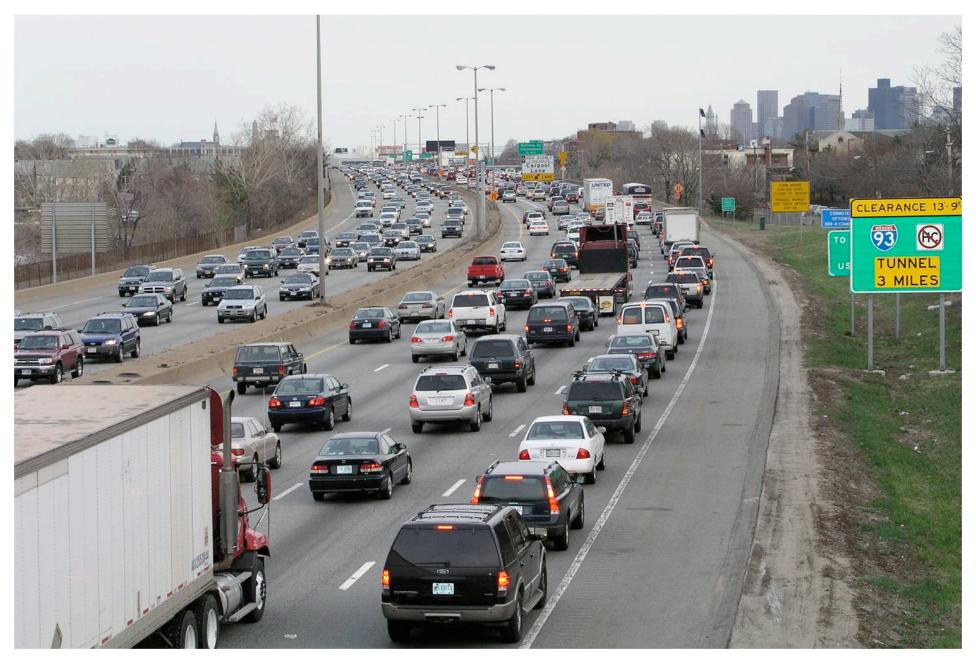

BOSTON Metropolitan Area Cities and Densities - 2000


Somerville and Chelsea Characteristics - Susceptible and Vulnerable


Somerville and Chelsea Characteristics - Eye opener data on AMI & LC


Density plus TRAP = Highest Age-adjusted Excess AMI & Lung Cancer / SM


Somerville Diesel Commuter Rail Trips - 200/Day - 15,000/SM/YR

Somerville Highway Trips - 250,000 VPD - 200,000 VMT/SM City Average

Somerville Highway Trips - 250,000/Day on just Interstate 93 and Routes 28 & 38 Busy rush hour on 193 shown - all rush hours congested in at least one direction

Harvard VA Transportation Worker Series - Garshick 2008 - one of many This transportation worker series is highly relevant to near source TRAP

Table 4. Lung cancer mortality percent change per year of work and HRs (95% CIs) associated with cumulative years of work as an LH driver, P&D driver, dockworker, or combination worker, with mortality assessed 1985–2000, and adjustment for estimated differences in smoking behavior.

		Lung cancer	Percent change	Smoking	HR for 20	years of work
Job title	Person-years	deaths	per year of work	adjustment factor ^a	Multivariate ^b	Smoking adjusted ^c
LH	161,503	323	2.5 (0.2-4.9)	1.17	1.65 (1.04-2.62)	1.40 (0.88-2.24)
P&D	139,054	233	3.6 (1.2-6.1)	0.92	2.04 (1.28-3.25)	2.21 (1.38-3.52)
Dockworker	147,513	205	3.4 (0.8-6.0)	0.96	1.94 (1.18-3.18)	2.02 (1.23-3.33)
Combination	96,543	150	4.0 (1.5-6.6)	0.94	2.20 (1.35-3.61)	2.34 (1.42-3.83)

"Job-specific smoking adjustment factor was calculated by dividing the smoking weighted risk for each job by the smoking weighted risk for all workers not employed in that job. "HRs were calculated using regression coefficients from multivariate Cox proportional hazard regression models with baseline hazards based on age in 1985, decade of hire, and calendar time, with risk sets by attained age, adjusted for the healthy worker survivor effect (total years on work, years off of work), race, and census region. For ≥ 1 year as ever employed as a clerk, hostler, mechanic, or in an other job. "Smoking-adjusted RR calculated by dividing by the appropriate smoking adjustment factor. 95% CIs were calculated by considering the sampling error in calculating each job-specific correction factor (see "Materials and Methods").

Scandinavian NO2 / NOx Series - highly relevant to near source TRAP Nyberg Stockholm 2000 lung cancer study - nice job on relevant factors

TABLE 2. Relative Risk of Lung Cancer (and 95% Confidence Interval) Associated with Smoking, Radon, Socioeconomic Status, Some Occupational Exposures and Employment in Risk Occupations

705 844 313 363 139 579 587 572 626 488 677 333 866	1 6.19 8.45 18.4 34.6 1 0.94 1.08 1.07	4.30-8.90 5.70-12.5 12.7-26.0 23.2-51.0 0.74-1.19 0.85-1.3 0.83-1.39 0.73-1.19 0.65-1.10 0.58-0.99
313 363 139 579 587 572 626 488 677 333 866	8.45 18.4 34.6 1 0.94 1.08 1.07	5.70–12.5 12.7–26.6 23.2–51.6 0.74–1.19 0.85–1.3 0.83–1.36
313 363 139 579 587 572 626 488 677 333 866	8.45 18.4 34.6 1 0.94 1.08 1.07	5.70–12.5 12.7–26.6 23.2–51.6 0.74–1.19 0.85–1.3 0.83–1.36
313 363 139 579 587 572 626 488 677 333 866	8.45 18.4 34.6 1 0.94 1.08 1.07	5.70–12.5 12.7–26.6 23.2–51.6 0.74–1.19 0.85–1.3 0.83–1.36
363 139 579 587 572 626 488 677 333 866	18.4 34.6 1 0.94 1.08 1.07 1 0.92 0.87	0.74-1.19 0.85-1.39 0.73-1.19 0.65-1.10
363 139 579 587 572 626 488 677 333 866	18.4 34.6 1 0.94 1.08 1.07 1 0.92 0.87	0.74-1.19 0.85-1.39 0.73-1.19 0.65-1.10
139 579 587 572 626 488 677 333 866	34.6 1 0.94 1.08 1.07 1 0.92 0.87	0.74-1.19 0.85-1.39 0.83-1.39 0.73-1.19 0.65-1.10
579 587 572 626 488 677 333 866	1 0.94 1.08 1.07 1 0.92 0.87	0.74-1.19 0.85-1.39 0.83-1.39 0.73-1.19 0.65-1.10
587 572 626 488 677 333 866	0.94 1.08 1.07 1 0.92 0.87	0.85-1.39 0.83-1.39 0.73-1.19 0.65-1.10
587 572 626 488 677 333 866	0.94 1.08 1.07 1 0.92 0.87	0.85-1.39 0.83-1.39 0.73-1.19 0.65-1.10
572 626 488 677 333 866	1.08 1.07 1 0.92 0.87	0.85-1.39 0.83-1.39 0.73-1.19 0.65-1.10
488 677 333 866	1.07 1 0.92 0.87	0.83-1.39 0.73-1.19 0.65-1.10
488 677 333 866	1 0.92 0.87	0.73-1.15 0.65-1.16
677 333 866	0.92 0.87	0.65-1.10
677 333 866	0.92 0.87	0.65-1.10
333 866	0.87	0.65-1.10
866		
	0.74	0.58-0.93
The same of the		
2262	1	
102	1.41	0.97-2.05
2268	1	
	1.47	1.01-2.14

2180	1	
	1.47	1.10-1.9
.115		1.10-1.5
1802	1	
	1.15	0.95-1.4
3	2189 175 1 1802	96 1.47 9 2189 1 175 1.47

Nyberg Stockholm 2000 - All statistical significance is in highest NO2 decile when viewing association of lung cancer with long term residential exposures

TABLE 4. Relative Risk of Lung Cancer (and 95% Confidence Interval) Associated with 10-Year Averages of Two Exposure Indicators for Air Pollution (NO₂ for Traffic-Related Air Pollution and SO₂ for Air Pollution from Heating) Lagged 20 Years

			One	Pollutant*	Both	Pollutants†
Variable	Cases	Controls	RR‡	95% CI‡	RR‡	95% CI‡
NO₂ from road traffic			104599		110000	-225-50 900-005
Continuous variable (per 10 µg/m³)			1.10	0.97-1.23	1.15	0.97-1.35
Quartiles and 90th percentile						
$<12.78 \mu g/m^3 \S$	243	608	1		1	
$\geq 12.78 \text{ to } < 17.35 \mu g/\text{m}^3$	264	588	1.15	0.91-1.46	1.19	0.91-1.56
≥17.35 to <23.17 µg/m ³	250	601	1.01	0.79-1.29	1.11	0.83-1.48
≥23.17 to <29.26 µg/m ³	165	346	1.07	0.81 - 1.42	1.19	0.86-1.66
≥29.26 µg/m³	120	221	1.44	1.05-1.99	1.60	1.07-2.39
SO, from heating					82457255	595A - NVS-5
Continuous variable (per 10 µg/m ³)			1.01	0.98-1.03	0.99	0.95-1.02
Quartiles and 90th percentile						
<66.20 μg/m ³ §	239	612	1		1	
≥66.20 to <87.60 µg/m ³	270	581	1.16	0.91-1.47	1.07	0.83-1.40
\geq 87.60 to <110.30 μ g/m ³	259	593	1.00	0.79-1.27	0.90	0.67-1.19
≥110.30 to <129.10 µg/m ³	151	360	0.92	0.70-1.21	0.80	0.58-1.12
≥129.10 µg/m ³	123	218	1.21	0.89-1.66	0.95	0.64-1.39

Estimated time weighted average air pollution exposure 21-30 years before end of follow-up.

§ Referent category.

^{*} Estimate obtained when only one pollutant was entered into the regression model.

[†] Estimate obtained when the corresponding variable for the other pollutant (SO₂ or NO₂) was entered separately into the same regression model as a confounder. For example, point estimates 1.15 (NO₂) and 0.99 (SO₂) for the continuous air pollution variables are obtained from the same model, and similarly for the categorical variable results.

[‡] Adjusted for age, selection year, smoking, radon, socioeconomic grouping, occupational exposure to diesel exhaust, other combustion products and asbestos and employment in risk occupations.

Scandinavian NO2/NOx Series - Nafstad Oslo 2003 lung cancer study - once again all significance is in top 10% of LT NOx exposure - no SO2 association

Table 3 Incidences and crude and adjusted risk ratios with 95% confidence intervals of developing lung cancer and non-lung cancer among 16 209 middle aged men living in Oslo in 1972, according to average exposure to nitrogen oxides (NO_x) and sulphur dioxide (SO₂) at their home address during 1974 to 1978

	Incidence			One p	ollutant	*Two p	ollutants
	(1000/year)	cRR	95% CI	aRR	95% CI	aRR	95% CI
Lung cancer							
Model 1, NO _x							
$0-9.99 \mu g/m^3$	1.09	1 (ref)					
10-19.99 μg/m ³	1.05	0.96	0.75 to 1.23	0.90	0.70 to 1.15	1.02	0.75 to 1.39
20-29.99 μg/m ³	1.34	1.25	0.96 to 1.62	1.06	0.81 to 1.38	1.33	0.87 to 2.04
30+ μg/m ³	1.49	1.37	1.02 to 1.85	1.36	1.01 to 1.83	2.22	1.30 to 3.79
Model 2, NO _x	4-74/5/50	0.0000		100000000			
Per 10 µg/m ³		1.12	1.05 to 1.20	1.08	1.02 to 1.15	1.10	1.03 to 1.17
Model 1, SO ₂							
$0-9.99 \mu g/m^3$	1.13	1 (ref)					
$10-19.99 \mu g/m^3$	1.28	1.15	0.89 to 1.48	1.05	0.81 to 1.35	0.84	0.57 to 1.23
20-29.99 μg/m ³	1.26	1.12	0.84 to 1.49	0.95	0.72 to 1.27	0.78	0.53 to 1.16
30+ μg/m ³	1.14	1.01	0.75 to 1.36	1.06	0.79 to 1.43	0.56	0.33 to 0.95
Model 2, SO ₂			20 20 20 202	77	SE 55		
Per 10 µg/m ³		1.01	0.94 to 1.08	1.01	0.94 to 1.08	0.96	0.88 to 1.04

Rosenlund et al

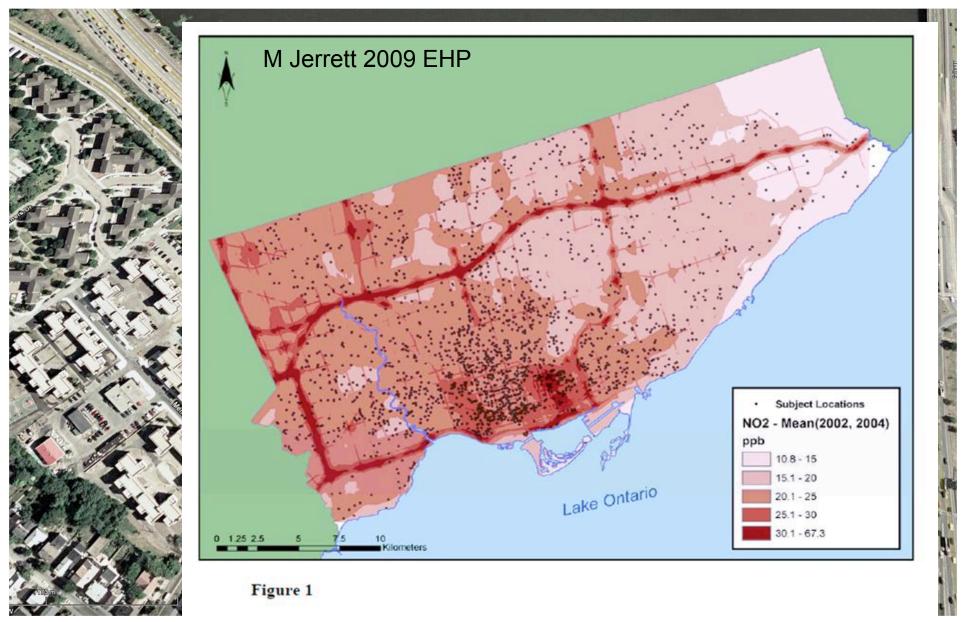
Epidemiology • Volume 20, Number 2, March 2009

TABLE 2. ORs and 95% Cls for Myocardial Infarction Associated With 5-Year Average Exposure to Traffic-Generated Air Pollution

	No. Subjects	NO ₂ ^a OR ^b (95% CI)	CO ^a OR ^b (95% CI)	PM ₁₀ ^a OR ^b (95% CI)
All subjects (n = $301,27$	73)			
Controls	276,926	1.0	1.0	1.0
All cases ^c	24,347	1.04 (0.99-1.09)	1.01 (0.97-1.05)	1.04 (1.00-1.09)
Nonfatal cases ^c	15,538	0.94 (0.89-1.00)	0.94 (0.89-1.00)	0.98 (0.93-1.03)
Fatal cases ^c	8,809	1.23 (1.15-1.32)	1.14 (1.07–1.21)	1.16 (1.09-1.24)
Inhospital deathe	3,323	1.08 (0.96-1.20)	1.00 (0.91-1.10)	1.05 (0.95-1.17)
Out-of-hospital death ^c	5,486	1.34 (1.23–1.46)	1.23 (1.14–1.32)	1.23 (1.14–1.33)
Restriction to subjects w	ho did not move betwe	en population censuses	(n = 80,155)	
Controls	73,581	1.0	1.0	1.0
All cases ^c	6,574	1.11 (1.01-1.23)	1.04 (0.94-1.14)	1.11 (1.02-1.21)
Nonfatal cases ^c	5,389	1.00 (0.90-1.11)	0.96 (0.87-1.06)	1.05 (0.96-1.15)
Fatal cases ^c	1,185	2.54 (1.96-3.29)	2.03 (1.59-2.60)	1.56 (1.28-1.91)
Inhospital deathe	401	2.39 (1.55-3.68)	2.04 (1.35-3.08)	1.58 (1.13-2.19)
Out-of-hospital death ^c	784	2.62 (1.92–3.57)	2.03 (1.50–2.74)	1.56 (1.22–1.98)

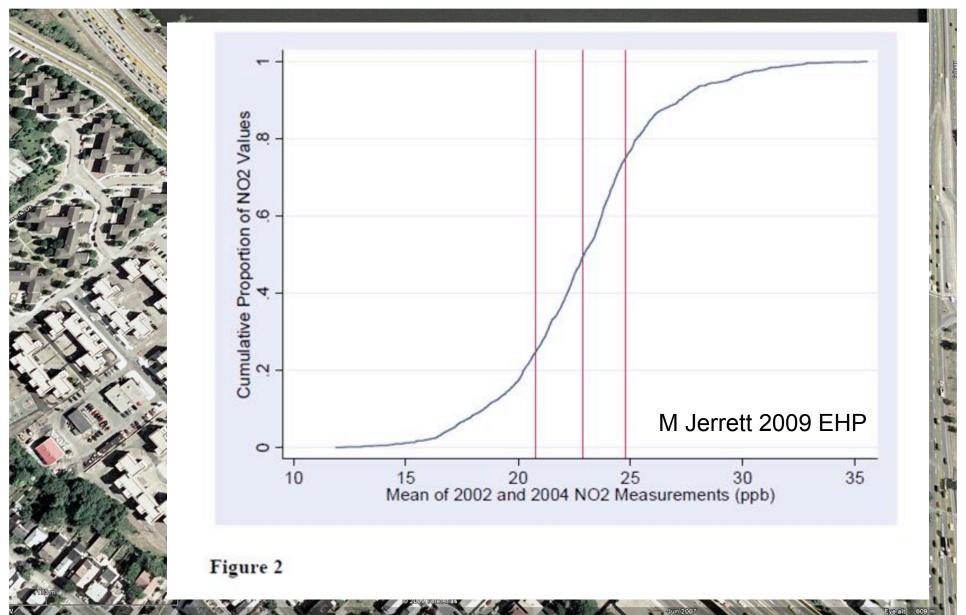
^aValues are calculated for a change in the air pollution level from the fifth to the 95th percentile, corresponding to about 30 μg/m³ for NO₂, 300 μg/m³ for CO, and 5 μg/m³ for PM₁₀. PM₁₀ assessed only for 2000, thus assuming constant levels during 1960 to 2000. ^bAdjusted for age, sex, calendar year, and socioeconomic status.

13'-


S)

L

^cAll case series compared with a common control group in the same model by using multinomial logistic regression.



Jerrett 2009 Toronto TRAP and Circulatory Mortality Risk in a Susceptible Population

Jerrett 2009 Toronto Circulatory Risk in a Susceptible Population - NO2 IQR

Jerrett 2009 Toronto Circulatory Mortality - Susceptible Population IQR is 4 ppb NO2 and 1.39 RR - 10 ppb NO2 contrast is 2.28 HR

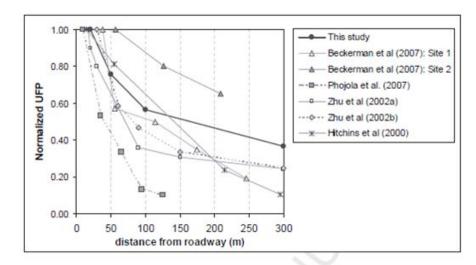
Table 3: Relative Risk of Mortality in relation to residential proximity to traffic and an IQR increase in mean NO₂ (2002 and 2004). Each model adjusted for all of the confounders controlled for in the Final Model from Table 2. The first result is for the model in which proximity to traffic is the only exposure variable. The second result is for models in which both the traffic marker and NO₂ are included together.

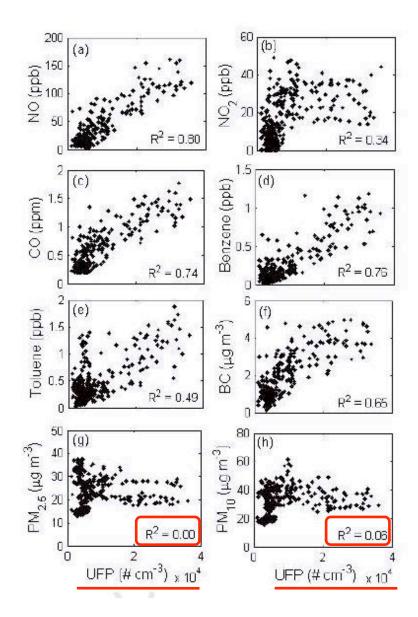
M Jerrett 2009 EHP	All nonaccidental causes of death (N = 298)	Circulatory (N = 80)	All nonaccidental causes of death less circulatory, respiratory and lung cancer (N = 109)
Model 1: Traffic Marker is the exposure variable	1.19 (0.92-1.53)	1.48 (0.91-2.42)	1.17 (0.74 - 1.84)
Model 2: Traffic Marker + NO ₂			
Traffic Marker	1.11 (0.85-1.45)	1.22 (0.74-2.02)	1.15 (0.71 - 1.85)
NO ₂	1.13 (0.97 - 1.32)	1.39 (1.05-1.85)	1.03 (0.81 - 1.31)

Accepted Manuscript

Title: Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants

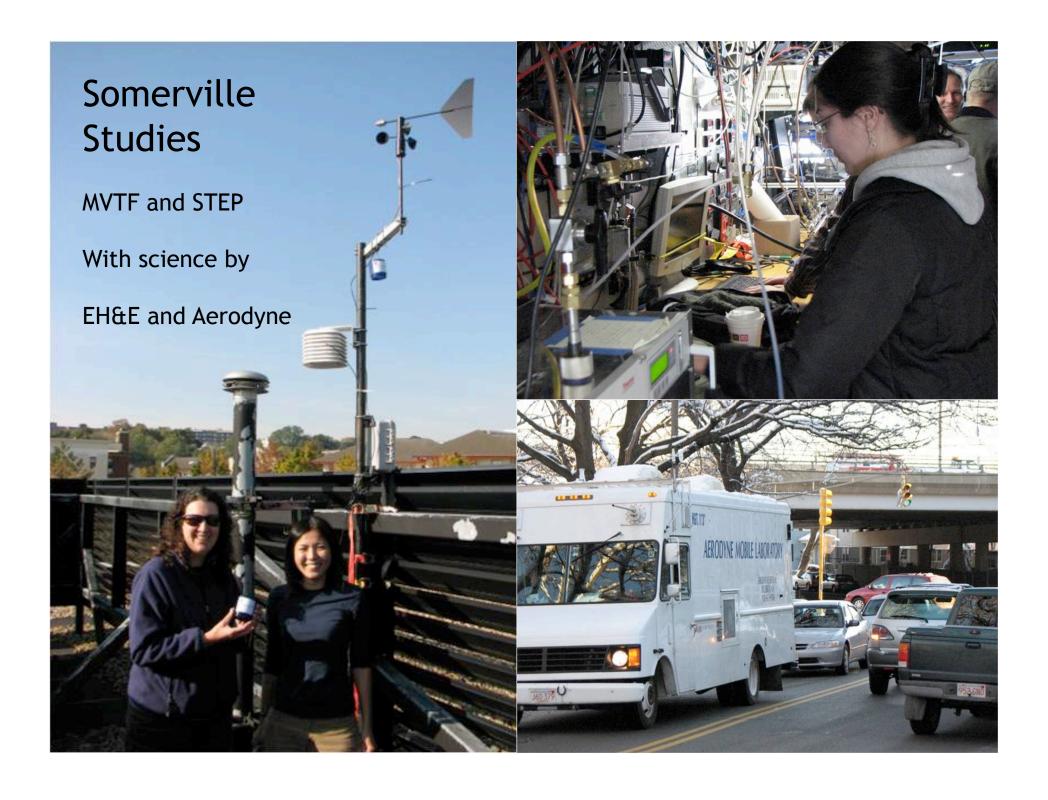
Authors: G.S.W. Hagler, R.W. Baldauf, E.D. Thoma, T.R. Long, R.F. Snow, J.S. Kinsey, L. Oudejans, B.K. Gullett


PII: S1352-2310(08)01083-2 DOI: 10.1016/j.atmosenv.2008.11.024

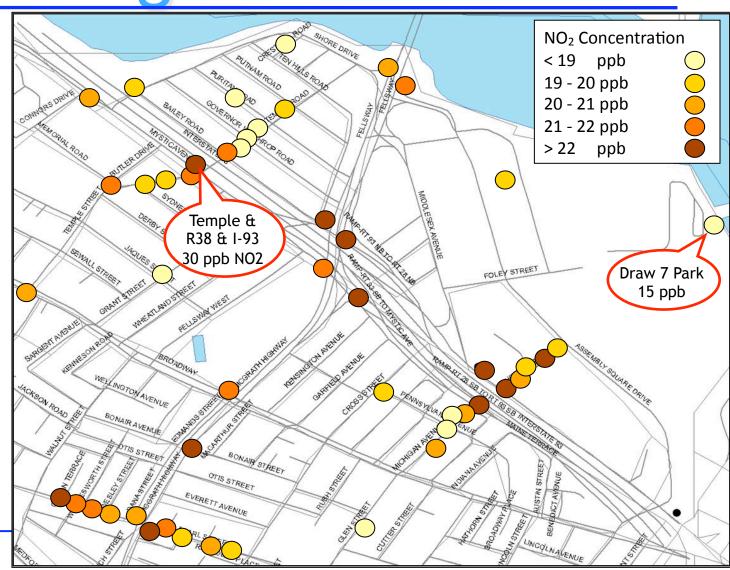

Reference: AEA 8726

To appear in: Atmospheric Environment

Received Date: 23 April 2008 Revised Date: 14 November 2008 Accepted Date: 15 November 2008

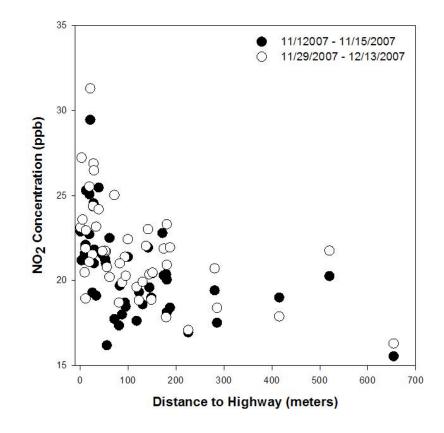

Please cite this article as: Hagler, G.S.W., Baldauf, R.W., Thoma, E.D., Long, T.R., Snow, R.F., Kinsey, J.S., Oudejans, L., Gullett, B.K. Ultrafine particles near a major roadway in Raleigh, North Carolina: downwind attenuation and correlation with traffic-related pollutants, Atmospheric Environment (2008), doi: 10.1016/j.atmosenv.2008.11.024

Nice work by EPA & NOAA - Hagler Raleigh NC - UFP does not correlate with PM2.5 or PM10 - PM2.5 regulations DO NOT PROTECT vulnerable populations from UFP-TRAP


ATMOSPHERIC ENVIRONMENT

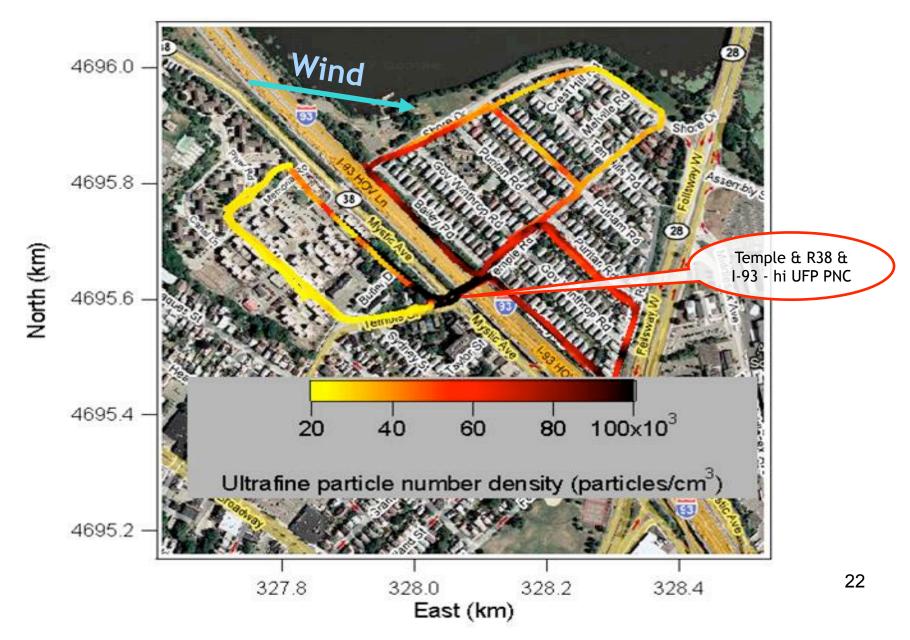
NO₂ Along Roads

Lynn urban background ~ 10 ppb

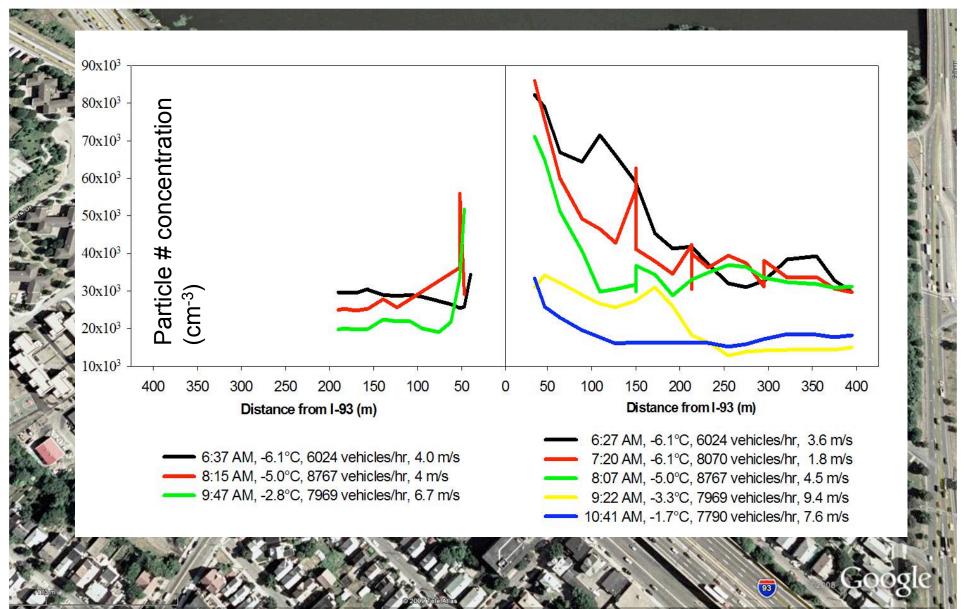

- Clear traffic-related pattern
- NO₂ measured near
 I-93 is twice as high as the level in Draw
 7 park
- NO₂ within 50 m of I-93 is similar to the concentrations at Roxbury Crossing and Kenmore Sq.

NO₂ Levels

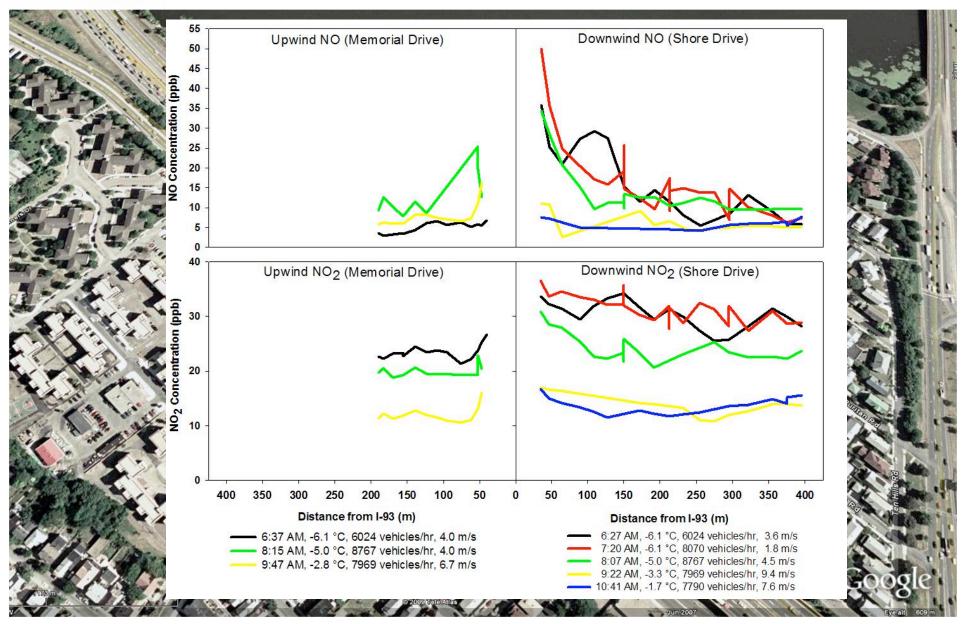
- Two-week averages
 - Mean (SD): 20.6 (2.7) ppb
 - Range: 15 32 ppb
- NO₂ weakly correlated with distance (m) to highway
 - I-93: -0.19 (*p*=0.06)
 - MA-28: -0.28 (p=0.006)
- NO₂ strongly correlated with traffic density (TD)
 - TD_{25m}: 0.61 (*p*<0.0001)
 - TD_{50m}: 0.60 (*p*<0.0001)
 - TD_{100m}: 0.48 (*p*<0.0001)



Route for a portion of Aerodyne investigation Morning of January 16 2008 - analysis at Tufts

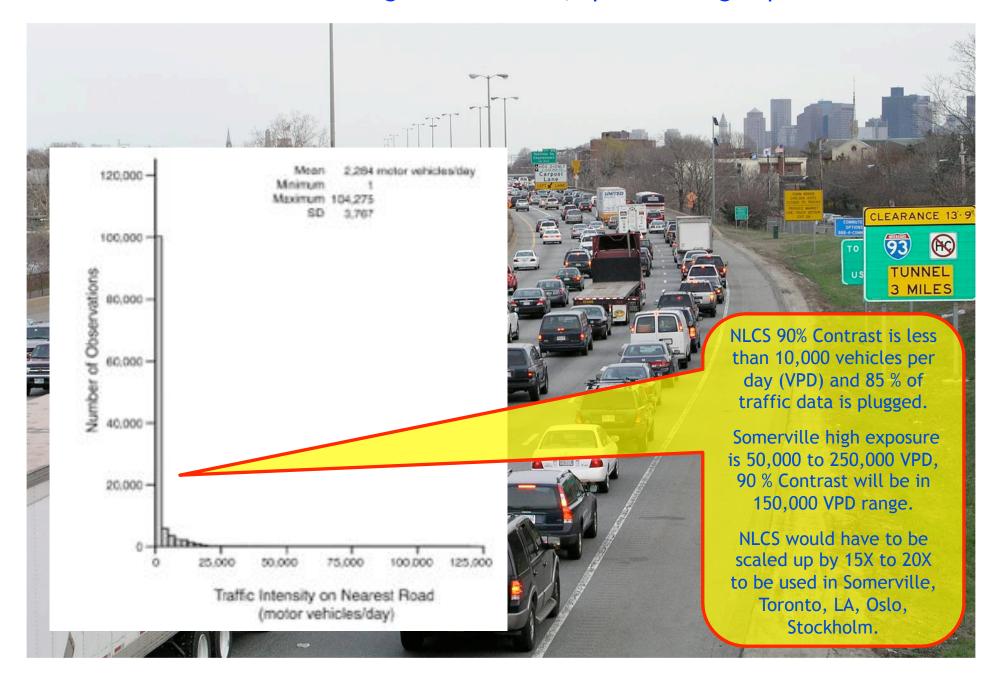

Pollutant map in Somerville: ultrafine particles

1/16/2008 7:00 - 7:45 am - map by Aerodyne Research



UFP Particle Number Count up to 100,000 per cubic centimeter of air January 16 2008

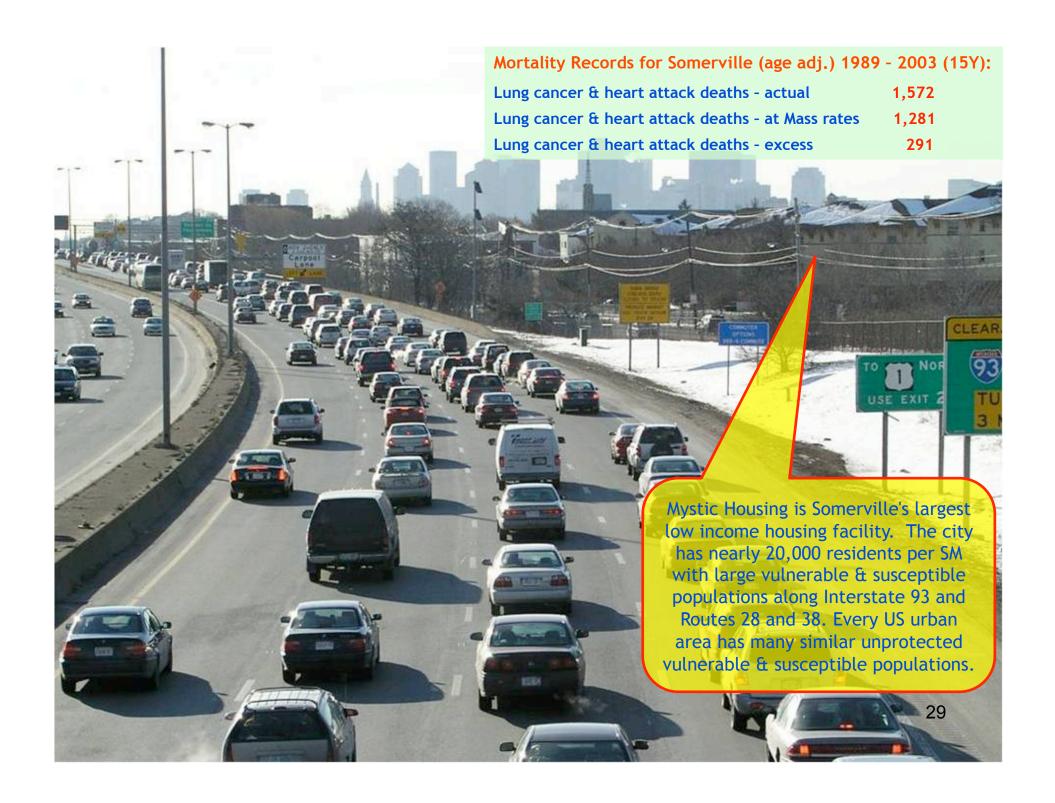
NO is proportional to UFP PNC but NO2 is less so Drop in NOx & UFP as morning meteorology proceeds



Pollutant map in Somerville: NO_x

1/16/2008 7:00 - 7:45 am - map by Aerodyne Research

Brunekreef 2009 HEI NLCS - great scientists, sponsor - big exposure issues


Somerville - highest NO2 and UFP corner - Ground Zero for TRAP - is now a new low income housing project. Asked about air pollution, a proponent is reported to have said it would be a great buffer for the community - i.e., a new kind of human shield.

Biggest issue is, "When do we deal with TRAP?" Looks like there are about 100,000 near source TRAP pre-mature mortalities per year with 50,000 avoidable. Largest factors are focus and scientific reticence. We need a few heroes!!!

Keywords: sea level, global warming, glaciology, ice sheets

